a2 United States Patent

Bose et al.

US009154800B2

US 9,154,800 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND APPARATUS FOR A MEMORY

EFFICIENT APPROACH FOR DECODING
PROGRESSIVE JOINT PHOTOGRAPHIC
EXPERTS GROUP (JPEG) IMAGES

(71) Applicant: Adobe Systems Incorporated, San Jose,
CA (US)
(72) Inventors: Shiladitya Bose, Kolkata (IN); Vijay
Kumar Sahu, Ghaziabad (IN); Sourav
Sikdar, Kolkata (IN); Rahul Gupta,
New Delhi (IN)
(73) Assignee: ADOBE SYSTEMS
INCORPPORATED, San Jose, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 115 days.
(21) Appl. No.: 13/951,842
(22) Filed: Jul. 26, 2013
(65) Prior Publication Data
US 2015/0030245 Al Jan. 29, 2015
(51) Imt.ClL
GO6K 9/36 (2006.01)
HO4N 19/34 (2014.01)
HO4N 19/60 (2014.01)
HO4N 19/44 (2014.01)
HO4N 19/426 (2014.01)
(52) US.CL
CPCcccue. HO4N 19/34 (2014.11); HO4N 19/426

(2014.11); HO4N 19/44 (2014.11); HO4N 19/60

(2014.11)

400
MEMORY BUFFERS ~ ——
ONE PER SCAN

408 COMPRESS DATA OF SCAN4 410
FOR REST 50% IMAGE

(@]

(@]

o
\‘| SCAN,,

404

COMPRESS DATA OF SCAN2 412
FOR REST 50% IMAGE

COMPRESS DATA OF SCAN3

FOR REST 50% IMAGE

DCT DATA FOR 50%
ROWS OF IMAGE H

(@3

COMPRESS DATA OF SCAN, 412
FOR REST 50% IMAGE

410

412
412
412

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,187,802 B2* 3/2007 Ju .o 382/233
2006/0008161 Al* 1/2006 Kaithakapuzha .. 382/233
2008/0112629 Al* 5/2008 Chenetal. ... 382/233
2013/0022114 Al* 12013 Leeetal. 375/240.12

OTHER PUBLICATIONS

Kun-Bin Lee et al, “A Memory-Efficient Progressive JPEG
Decoder”, 4 pgs.

* cited by examiner

Primary Examiner — Li Liu
(74) Attorney, Agent, or Firm — Keller Jolley Preece

(57) ABSTRACT

A computer implemented method and apparatus for a
memory efficient approach for decoding progressive JPEG
images. The method comprises (a) accessing a progressive
JPEG image, wherein the progressive JPEG image comprises
a plurality of compressed scans and wherein each scan in the
plurality of scans comprises a plurality of compressed rows of
image data; (b) decompressing not more than half of the
compressed rows of each scan in the plurality of scans into a
memory buffer; (c) copying a remaining plurality of com-
pressed rows of each scan in the plurality of scans into a
plurality of small memory buffers; (d) decoding, in place, the
decompressed rows in the memory buffer; and (e) repeating
steps (b)-(d) until a predefined number of rows are remaining
in the plurality of small memory buffers, at which time the
remaining rows are decompressed and decoded.

20 Claims, 5 Drawing Sheets

™
=

406 0

MEMORY BUFFERS
ONE PER SCAN

COMPRESS DATA OF
a8 § SCAN{FOR REST 25% |42
COMPRESSDATACF | _,,
SCANZFOR REST 25%
2

COMPRESS DATA OF SCANq | 414~
FOR REST 50% IMAGE

50% DECODED
IMAGE

0
COMPRESS DATA OF SCAN{ "
FOR REST 50% IMAGE
COMPRESS DATA OF SCAN{ COMPRESS DATA OF
FOR REST 50% IMAGE DCT DATA FOR SCAN3FOR REST 25% [~~422
FURTHER 25%
o ROWS OF IMAGE o
(@) (@)
o
2

o §
416
COMPRESS DATA OF SCAN{
FOR REST 50% IMAGE

COMPRESS DATA OF 42
SCAN2 FOR REST 25%

US 9,154,800 B2

Sheet 1 of 5

Oct. 6, 2015

U.S. Patent

JOVNI
H! | aaaoo3a

VLl

-— > A

M
cll A

f

143ANOD H0O100

A

100 ISHIANI |=

\

oLl

1HdV ANNOHOMOVY
l "Old
SS 00
(
901
——801

M

¢0l —

UNvOS

@
@

O

- ENVOS

/// CNVOS [

INVOS |~

O3dlr 3AISSTHO0Ud

— V0l

— 0l

-0l

-0l

U.S. Patent Oct. 6, 2015 Sheet 2 of 5 US 9,154,800 B2

200
210 2?2

COMPUTER

2081 CPU SUPPORT CIRCUITS

DISPLAY [~212

J

MEMORY
OPERATING SYSTEM ——216

T >—214

DECODING MODULE ——218

DCT MEMORY BUFFER |——222

SMALL MEMORY | __ 504
BUFFERS

206

DECODED IMAGE |- 226

204
2 2?\»0

WEB SERVER /

JPEG IMAGES)

232-T~_| SCANS

23414+ __|ROWS)

FIG. 2

U.S. Patent

Oct. 6, 2015 Sheet 3 of 5

(START)~302

y

US 9,154,800 B2

300

ACCESS PROGRESSIVE JPEG

~— 304

>

y

DECOMPRESS 50% OF
COMPRESSED ROWS

l

—~— 306

COPY REMAINING ROWS TO
SMALL MEMORY BUFFERS

—~— 308

l

PERFORM IDCT AND
COLOR COMPRESSION

312

THRESHOLD

NO NUMBER OF

ROWS
REMAINING?

~—310

DECODE REMAINING ROWS

~—314

FIG. 3

US 9,154,800 B2

Sheet 4 of 5

Oct. 6, 2015

U.S. Patent

Vv Old

[AS A

JOVII %05 LSIH HO4
UNVOS 40 V1Va SSIHANOD

O
O

O

[A240s

JOVII %0S 1S3H HO4
ENVOS 40 V1Va SSTHANOD

cly ™

IOV %0S 1S3 ¥O4
CNVDS 40 V.1va SSIHANOD

JOVIAI 40 SMON
%08 J04 v1vad 10d

N
Y

/

/

oLy

JOVINI %05 1S3 HO4

LNVOS 40 V.IVA SSIHNO0D |

NVOS d3d INO

—— S¥H34d4Ng AHOW3N
0oy

UNvDS

O
O

O

ENVOS

Y

CNVOS

~

INVOS

O3drr IAISSTHOO0Ud

- 0b

—0v

-0V

—E0v

(

oy

US 9,154,800 B2

Sheet 5 of 5

Oct. 6, 2015

U.S. Patent

[AA NS

%G2 1S3 HO4 CNVOS
40 V.1va SSIHUdN0D

O

d¥ ©Old

oLy

O A
O

[AAdN.

%S¢ 1S3 HO4 ENVOS
40 V1Vva SSIHdNO0D

JOVINI 40 SMOY
%S¢ d3aHL1dNd
d04 v1lvd 10d

JOVINI %05 1S3 HO4
INVOS 40 Y.LVA SSTHANOD

——Cl¥

O
O

O

[AAZEN

%S¢ LSIH Y04 ENVOS
40 v1vd SS34dN0D

_| %S LS34 HO4INvOS
02Y ™1 40 v1va SSTHdNOD -8Ly
NVOS ¥3d INO ,‘\x
___ Sy344ng AMOW3W oy

0oy

JOVINI
a3aood3a %o0s

424

JOVINI %085 1S3 HOd
INVOS 40 V1va SSTUdNO0D

——Cly

JOVINI %05 1S3N HO4
INVOS 40 Y.LVA SSTHANOD

—Cl¥

JOVII %0S 1534 HOd
INVOS 40 V.Lvd SSTHAN0D

——0L¥

US 9,154,800 B2

1
METHOD AND APPARATUS FOR A MEMORY
EFFICIENT APPROACH FOR DECODING
PROGRESSIVE JOINT PHOTOGRAPHIC
EXPERTS GROUP (JPEG) IMAGES

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention generally relate to
image compression and, more particularly, to a method and
apparatus for a memory efficient approach for decoding pro-
gressive JPEG images.

2. Description of the Related Art

Image compression coding as specified by the Joint Pho-
tographic Expert Group (JPEG) is preferred in many appli-
cations. JPEG compression is an image compression tech-
nique that reduces files to about 5% of their original file size,
with little perceptible loss in image quality. In order to view a
JPEG compressed image (hereinafter called a JPEG) on the
display of a computing device, the JPEG must be decom-
pressed into a red/green/blue (RGB) color space before being
applied to the display.

Progressive mode of JPEG compression divides the origi-
nal image file into a series of sequential scans of digital image
data, where each sequential scan provides progressively more
detail of the original image. The progressive mode JPEG is
able to display a rough approximation of the original image
after a first of the sequential scans of the compressed data has
been decoded, and the image quality is then gradually
improved as more scans are decoded and the decoded data is
added to the decoded data from the prior scans. Therefore,
one can roughly view the image before all of the compressed
data of the image is completely received and decompressed.
When the JPEG is displayed on a client device, a JPEG
decoder converts the scans to an uncompressed bitmap image.
Decoding a progressive JPEG image is a memory intensive
process. Some images cannot be opened on certain devices
due to memory constraints.

Therefore, there is a need for a method and apparatus for a
memory efficient approach for decoding progressive JPEG
images.

SUMMARY OF THE INVENTION

A method and apparatus for a memory efficient approach
for decoding progressive JPEG images substantially as
shown in and/or described in connection with at least one of
the figures, as set forth more completely in the claims.

These and other features and advantages of the present
disclosure may be appreciated from a review of the following
detailed description of the present disclosure, along with the
accompanying figures in which like reference numerals refer
to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a typical pipeline currently used for decod-
ing a progressive JPEG;

FIG. 2 is a block diagram of an apparatus for a memory
efficient approach for decoding progressive JPEG images,
according to one or more embodiments;

FIG. 3 is aflowchart of a method for decoding a progressive
JPEG as performed by the decoding module of FIG. 2,
according to one or more embodiments; and

FIGS. 4A-4B illustrate a pipeline for decoding a progres-
sive JPEG as performed by the method of FIG. 3, according to
one or more embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

While the method and apparatus is described herein by way
of example for several embodiments and illustrative draw-
ings, those skilled in the art will recognize that the method
and apparatus for a memory efficient approach for decoding
progressive JPEG images is not limited to the embodiments
or drawings described. It should be understood, that the draw-
ings and detailed description thereto are not intended to limit
embodiments to the particular form disclosed. Rather, the
intention is to cover all modifications, equivalents and alter-
natives falling within the spirit and scope of the method and
apparatus for a memory efficient approach for decoding pro-
gressive JPEG images defined by the appended claims. Any
headings used herein are for organizational purposes only and
are not meant to limit the scope of the description or the
claims. As used herein, the word “may” is used in a permis-
sive sense (i.e., meaning having the potential to), rather than
the mandatory sense (i.e., meaning must). Similarly, the
words “include”, “including”, and “includes” mean includ-
ing, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present invention include a method
and apparatus for a memory efficient approach for decoding
progressive JPEG images. FIG. 1 depicts a typical pipeline
100 currently used for decoding a progressive JPEG 102,
wherein all scans 104 of the progressive JPEG are decoded to
their final pixel values. Huffman decompression is a decom-
pression method known to those of ordinary skill in the art.
Huffman decompression 106 decompresses all of the scans
104 of the progressive JPEG 102, leaving the decoded image
data as discrete cosine transform (DCT) data 108, as is known
in the art. However, to display the image on a computer
display, the image must be converted to, for example, an RGB
color space so it can be viewed on a computer display. To
converting the DCT data 108 to RGB color space, an Inverse
Discrete Cosine Transform (IDCT) algorithm 110 is used.
The IDCT algorithm 110 converts the DCT data 108 to a color
space, which may be a YC,C, color space, which is encoded
RGB information or other color space, such as CMYK color
space. A color conversion 112 is then performed on the YCBR
color space data to finally generate the decoded RGB image
114. Regardless, of the compression method, this decompres-
sion pipeline 100 is the most commonly used by those skilled
in the art.

Typically, the amount of memory required to decode a
progressive JPEG using this method is twice that of the origi-
nal image. For example, an image with dimensions 7240x
5433 (in pixels) requires a client buffer of 3x7240x5433=112
MB, where three is the number of color channels, in this case
3 corresponds to red, green, and blue from the RGB color
space. If the image were in a cyan, magenta, yellow, and key
(CYMK) color space, the number of channels is 4. If the
image were in grayscale, the number of channels is 1. The
internal memory required to hold the DCT data as it is decom-
pressed is twice that, or 224 MB. As shown in FIG. 1, a
memory of size w by h would be insufficient, and thus must be
2 w by hin order to hold the DCT Data as it is decompressed.
This requires a total memory usage of 337 MB to decode a
112 MB image.

This is a large demand for memory on a client device. Some
images cannot be opened on certain devices due to memory
constraints.

The embodiments of the present invention access a pro-
gressive JPEG image in a sequentially forward manner and
decode the image in a memory buffer of an order of memory
required to hold the uncompressed raw data of the image. The

US 9,154,800 B2

3

embodiments access a progressive JPEG, which includes a
plurality of scans. Each scan includes a plurality of rows of
compressed data. The compressed data is Huffman encoded.
In some embodiments, 50% of the rows of each scan are
decompressed into a DCT memory buffer of a computing
device, while storing the remaining rows of each scan in
individual small memory buffers. In other embodiments, less
than 50% of the rows of each scan are decompressed into the
DCT memory bufter. The DCT memory buffer is the amount
of memory required to hold the final raw data in pixels for the
image of a given height (h) and width (w), for example,
wxhxnumber of color channels (for example, 3 for RGB). If
50% of the rows are decompressed and then decoded, in
place, into a proper color space for the computing device, for
example, the RGB color space, then the decoding frees up
half of the space in the DCT memory buffer, such that 50% of
the remaining rows, comprising 25% of the original rows,
may be decompressed from the smaller memory buffers into
the now free space in the DCT memory buffer. The 50% of the
remaining rows are decoded in place, freeing up more space
in the DCT memory buffer. The process iterates by sequen-
tially decompressing 50% of the remaining rows from the
small memory buffers and decoding them in place in the DCT
memory buffer until the entire JPEG image is decoded. Thus,
as long as not more than 50% of the rows are decompressed
and decoded at each iteration, the embodiments provide a
method of decoding progressive JPEGs with minimal
memory requirements beyond that of the decoded image.

Advantageously, the present invention may be imple-
mented as a shared library for use by applications that display
images, such as ADOBE® ILLUSTRATOR®, PHOTO-
SHOP®, LIGHTROOM®, ACROBAT®, ADOBE® Bridge,
ADOBE® MUSE™, INDESIGN®, ADOBE® REVEL®,
and the like. The embodiments can decompress progressive
JPEG images with minimal memory requirements. For
example, an image may have a height of 5433 pixels and a
width of 7240 pixels and a file size of 1.36 MB. Decoding the
image into an RGB color space using the present invention
uses a DCT memory buffer of approximately 112 MB and
additional memory for the small memory buffers that is
approximate half of the file size, equaling 0.68 MB, or less
than 1 MB for a total of 113 MB, compared to a current
decoder, which would require 337 MB.

Additionally, the present invention does not adversely
impact the order of the speed at which images are decom-
pressed. While requiring far less memory to decompress pro-
gressive JPEG images, the present invention adds no notice-
able processing time to the decompression.

Various embodiments of a method and apparatus for a
memory efficient approach for decoding progressive JPEG
images are described. In the following detailed description,
numerous specific details are set forth to provide a thorough
understanding of the claimed subject matter. However, it will
be understood by those skilled in the art that claimed subject
matter may be practiced without these specific details. In
other instances, methods, apparatuses or systems that would
be known by one of ordinary skill have not been described in
detail so as not to obscure claimed subject matter.

Some portions of the detailed description that follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general-
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are

10

15

20

25

30

35

40

45

50

55

60

65

4

examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

FIG. 2 is ablock diagram of an apparatus 200 for amemory
efficient approach for decoding progressive JPEG images,
according to one or more embodiments. The apparatus 200
includes a computer 202 and a web server 204, communica-
tively coupled to one another via a network 206. The com-
puter 202 is a computing device, such as a desktop computer,
laptop, tablet computer, mobile phone, and the like, for ren-
dering a progressive JPEG image. The computer 202 includes
a Central Processing Unit (CPU) 208, a memory 214, and
support circuits 210 connected to a display unit 212. The CPU
208 may include one or more commercially available micro-
processors or microcontrollers that facilitate data processing
and storage. The various support circuits 210 facilitate the
operation of the CPU 208 and include one or more clock
circuits, power supplies, cache, input/output circuits, and the
like. The memory 214 includes at least one of Read Only
Memory (ROM), Random Access Memory (RAM), disk
drive storage, optical storage, removable storage and/or the
like.

The memory 214 includes an operating system 216, a
decoding module 218, a DCT memory buffer 222, a plurality
of' small memory buffers 224, and a decoded image 226. The
operating system 216 may include various commercially
known operating systems.

The network 206 includes a communication system that
connects computers (or devices) by wire, cable, fiber optic
and/or wireless link facilitated by various types of well-
known network elements, such as hubs, switches, routers, and
the like. The network 206 may be a part of the Intranet using
various communications infrastructure, such as Ethernet, Wi-
Fi, a personal area network (PAN), a wireless PAN, Blue-
tooth, Near field communication, and the like. The web server
204 includes a plurality of JPEG images 230. Each JPEG
image 230 includes a plurality of scans 232. Each scan 232
includes a plurality of rows 234 of image data.

The decoding module 218 receives a JPEG image 230 from
the web server 204. The JPEG image 230 is a progressive

US 9,154,800 B2

5

JPEG. A progressive JPEG is a JPEG image that has the
original image file divided into a series of sequential scans of
digital image data, where each sequential scan provides pro-
gressively more detail of the original image. The JPEG image
has a width (w) and a height (h) (in pixels). The decoding
module 218 creates a DCT memory buffer 222 for each chan-
nel (color space data) having a size of wxhxnumber of color
channels (e.g., 3 for RGB color space) of the JPEG image 230
and decompresses 50% of the rows 234 of each scan 232 in
the DCT memory buffer 222. In some embodiments, the rows
234 are decompressed using Huffman decompression. Huft-
man decompression produces discrete cosine transform
(DCT) data. Because DCT data resulting from the Huffman
compression requires 2 bytes for each byte of red/green/blue
(RGB) color space data, decoding half of the rows takes the
space of the decoded JPEG image. Thus, the amount of DCT
data that can be held in the DCT memory buffer 222 of size
wxh for a JPEG image of width w and height h, corresponds
to w*(l/2) ofthe image. In other words, the DCT data for 50%
of'the rows can be held in a memory of a size equal to the full
image. The remaining rows of each scan are stored in small
memory buffers. A small memory buffer 224 is created for
each of the scans 232 to hold the remaining rows 234 of each
scan 232. The memory required to store these remaining rows
234 is very small because the scans 232 are still compressed
and hold at most 50% of the compressed data of one scan 232.

The decoding module 218 decodes, in place, the 50% of'the
rows 234 in the DCT memory buffer 222. In some embodi-
ments, an Inverse Discrete Cosine Transform (IDCT) is per-
formed followed by a color conversion on the DCT data, as is
well known to one of ordinary skill in the art. Decoding leaves
wxh/2 amount of free space available in the DCT memory
buffer. This space is sufficient to hold the DCT data for wxh/4
of the image. The decoding module 218 decompresses 50%
of the remaining rows 234 (25% of the total image) of each
scan 232 stored in the small memory buffers 224 into the now
free space in the DCT memory buffer 222 and decodes the
rows 234 in place as described above. This process leaves
wxh/4 amount of free space in the DCT memory buffer 222.
The decoding module 218 decompresses 50% of the remain-
ing rows 234 of each scan 232 stored in the small memory
buffers 224 into the remaining free space of the DCT memory
buffer 222 and decodes rows 234 in place. The process iter-
ates until a predefined number of rows 234, for example, 8
rows, remain in the small memory buffers 224 at which time
the remaining rows 234 are decompressed and decoded. The
result is a fully decoded JPEG image 226.

FIG. 3 is a flowchart of a method 300 for decoding a
progressive JPEG as performed by the decoding module 218
of FIG. 2, according to one or more embodiments. The
method 300 iteratively decodes 50% of the compressed rows
in the scans in place in a memory buffer until all compressed
rows are decoded. The method 300 requires minimal addi-
tional memory beyond the memory required for the decoded
image. The method 300 starts at step 302 and proceeds to step
304.

At step 304, the method 300 accesses a progressive JPEG.

The JPEG image is a progressive JPEG. The progressive
JPEG includes a plurality of scans and each scan includes a
plurality of rows. The JPEG image has a width w and height
h measured in pixels).

The method 300 proceeds to step 306, where the method
300 decompresses 50% of the compressed rows of each scan.
The method 300 creates a DCT memory buffer for each color
channel that is the width and height of the original JPEG
image before it was compressed. The method 300 decom-
presses 50% of the rows of each scan into the DCT memory

10

15

20

25

30

35

40

45

50

55

60

65

6

buffer. In some embodiments, the method 300 decompresses
less than 50% of the rows, according to the rule that no more
than 50% of the compressed rows are decompressed at a given
iteration of the method. In some embodiments, the method
300 decompresses the rows using Huffman decompression, a
decompression method well known in the art. Huffman
decompression produces discrete cosine transform (DCT)
data. Each scan includes a plurality of DCT blocks that are 8
by 8 pixel blocks. Each DCT block within a scan includes one
DC coefficient and 63 AC coefficients. The DC coefficient
represents the average color of the 8 by 8 DCT block and is
located in the top left pixel of the 8 by 8 block. The DC
coefficients are encoded in the DCT data of the first scan.
Hence, the first scan is referred to as the DC scan. In some
embodiments, there can exist multiple DC scans without
deviating from the present invention.

When the DC coefficients are encoded in DCT data, the
difference in the DC coefficients is stored. For example, a DC
coefficient for a first DCT block may be 5 and a DC coeffi-
cient for a second DCT block may be 6. The method 300
encodes the first DC coefficient as 5, but encodes the second
DC coefficient as 1, which is the difference between the DC
coefficient of the first block and the DC coefficient of the
second block.

The DCT data resulting from the Huffman compression
requires 2 bytes for each byte of red/green/blue (RGB) color
space data. Thus, the amount of DCT data that can be held in
the DCT memory buffer of size w by h for a JPEG image of
width w and height h, corresponds to w*(h/2), or half of the
image. In other words, the DCT data for only 50% of the rows
can be held in a memory of a size equal to the original image.

The method 300 proceeds to step 308, where the method
300 creates a small memory bufter for each scan. There is a
one-to-one correspondence of scans to small memory buffers.
The method 300 stores the last decoded DC coefficient of the
DC scan in the first two bytes of the first small memory buffer
(i.e., the small memory buffer corresponding to the DC scan),
so that the method 300 has a reference when later decoding
the remaining rows. The method 300 then stores the remain-
ing rows from the DC scan in the first small memory buffer.
The method 300 stores the remaining rows from the remain-
ing scans (after half of the rows are removed for decompres-
sion) into the scan’s corresponding small memory buffer. The
memory required to store these remaining rows is very small
because the scans are still compressed.

The method 300 proceeds to step 310, where the method
300 decodes the rows that have been decompressed in the
DCT memory buffer. In some embodiments, an Inverse Dis-
crete Cosine Transform (IDCT) is performed followed by a
color conversion on the DCT data, as is well known to one of
ordinary skill in the art. After the first iteration, decoding
leaves w*h/2 amount of free space available in the DCT
memory buffer. This space is sufficient to hold the DCT data
for w*h/4 of the image, as described in further detail with
respect to FIGS. 4A and 4B, below.

The method 300 proceeds to step 312, where the method
300 determines whether there are more than a predefined
number of rows, for example, 8 rows, remaining in the small
memory buffers. If the method 300 determines that there are
more than the predefined number of rows remaining in the
small memory buffer, the method 300 proceeds to step 306
and iterates until there are not more than the predefined num-
ber of rows remaining in the small memory buffer. Each time
the decoding ofthe DC scan restarts, the stored DC coefficient
value is used for initialization. However, if at step 312, the
method 300 determines that there are not more than a pre-

US 9,154,800 B2

7

defined number of rows remaining in the small memory buft-
ers, the method 300 proceeds to step 314.

At step 314, the method 300 decompresses all remaining
rows from the small memory buffers into the remaining space
in the DCT memory buffer, decodes them in place as
described with respect to step 310, above. The resultis a fully
decoded JPEG image. The method 300 proceeds to step 316
and ends.

FIGS. 4A-4B illustrate a pipeline 400 for decoding a pro-
gressive JPEG as performed by the method 300 of FIG. 3,
according to one or more embodiments. FIG. 4A illustrates
the pipeline 400 including a progressive JPEG 402, which
includes a DC scan 403, a plurality of scans 404; each scan
404 including a plurality of rows (not shown). The pipeline
400 also includes a DCT memory bufter 406, a small memory
buffer 410 that corresponds to the DC scan 403, and a plural-
ity of small memory buffers 412. A last decoded DC coeffi-
cient is stored in the first two bytes 408 of the small memory
butfer 410.

When the progressive JPEG 402 is accessed, 50% of the
rows of the compressed scans 404 are decompressed into the
DCT memory buffer 406. The DCT memory buffer 406 is the
width, W and the height, H of the decoded JPEG image. The
DCT data resulting from decompressing the 50% of the rows
takes up the entire DCT memory buffer 406. As described
above, the DCT data takes up twice the space as the decoded
image. Therefore, half of the rows of the compressed scans
404 take up the space of the entire decoded image. The com-
pressed rows that are remaining from each scan 404 are stored
in corresponding small memory buffers 408.

FIG. 4B illustrates the pipeline 400 after the DCT data for
50% of rows (shown in FIG. 4A) are decoded. The pipeline
400 includes the small memory buffers 410, 412 that include
the remaining rows from the scans from the previous itera-
tion, the DCT memory buffer 406, and small memory buffers
420, 422. After the DCT data for 50% of the rows are
decoded, they take up the space 414 of half of the original
image. Before decoding, the decompressed DCT data took up
2 bytes of space for each byte of the decoded image. After
decoding, half of the DCT memory buffer 406 is freed up
leaving space 416 for decompressing additional rows from
each scan 403, 404 to be received from the small buffers 408.
Thus, 50% of the remaining rows (corresponding to 25% of
the image) from the small memory buffers 410, 412 are
decompressed into the free space 416 of the DCT buffer. The
remaining rows from the small memory buffers 410, 412 are
stored in small memory buffers 420, 422. The first two bytes
418 of small memory buffer 420 store the last decoded DC
coefficient from the first small memory buffer, 410, which
represents the remaining rows from the DC scan 403 of FIG.
4A.

The process iterates, filling the next 12.5% of the image,
then 6.25% of the image and so on until a predefined number
of rows remain in the small memory buffers 420, 422, at
which time all of the remaining rows are decompressed into
the DCT memory buffer 406, and then decoded. The result at
that point is a fully decoded image. The only memory
required in addition to the DCT memory buffer is the small
memory buffers that hold small amounts of compressed data.

The embodiments of the present invention may be embod-
ied as methods, apparatus, electronic devices, and/or com-
puter program products. Accordingly, the embodiments of the
present invention may be embodied in hardware and/or in
software (including firmware, resident software, micro-code,
etc.), which may be generally referred to herein as a “circuit”
or “module”. Furthermore, the present invention may take the
form of a computer program product on a computer-usable or

10

15

20

25

30

35

40

45

50

55

60

65

8

computer-readable storage medium having computer-usable
or computer-readable program code embodied in the medium
for use by or in connection with an instruction execution
system. In the context of this document, a computer-usable or
computer-readable medium may be any medium that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device. These computer program
instructions may also be stored in a computer-usable or com-
puter-readable memory that may direct a computer or other
programmable data processing apparatus to function in a
particular manner, such that the instructions stored in the
computer usable or computer-readable memory produce an
article of manufacture including instructions that implement
the function specified in the flowchart and/or block diagram
block or blocks.

The computer-usable or computer-readable medium may
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium include the following: hard disks, optical storage
devices, a transmission media such as those supporting the
Internet or an intranet, magnetic storage devices, an electrical
connection having one or more wires, a portable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, and a
compact disc read-only memory (CD-ROM).

Computer program code for carrying out operations of the
present invention may be written in an object oriented pro-
gramming language, such as Java®, Smalltalk or C++, and
the like. However, the computer program code for carrying
out operations of the present invention may also be written in
conventional procedural programming languages, such as the
“C” programming language and/or any other lower level
assembler languages. It will be further appreciated that the
functionality of any or all of the program modules may also be
implemented using discrete hardware components, one or
more Application Specific Integrated Circuits (ASICs), or
programmed Digital Signal Processors or microcontrollers.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
present disclosure and its practical applications, to thereby
enable others skilled in the art to best utilize the invention and
various embodiments with various modifications as may be
suited to the particular use contemplated.

The methods described herein may be implemented in
software, hardware, or a combination thereof, in different
embodiments. In addition, the order of methods may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc. All examples described
herein are presented in a non-limiting manner. Various modi-
fications and changes may be made as would be obvious to a
person skilled in the art having benefit of this disclosure.
Realizations in accordance with embodiments have been
described in the context of particular embodiments. These
embodiments are meant to be illustrative and not limiting.
Many variations, modifications, additions, and improvements
are possible. Accordingly, plural instances may be provided
for components described herein as a single instance. Bound-
aries between various components, operations and data stores

US 9,154,800 B2

9

are somewhat arbitrary, and particular operations are illus-
trated in the context of specific illustrative configurations.
Other allocations of functionality are envisioned and may fall
within the scope of claims that follow. Finally, structures and
functionality presented as discrete components in the
example configurations may be implemented as a combined
structure or component. These and other variations, modifi-
cations, additions, and improvements may fall within the
scope of embodiments as defined in the claims that follow.

While the foregoing is directed to embodiments of the
present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

The invention claimed is:

1. A computer implemented method comprising:

accessing a progressive JPEG image, wherein the progres-

sive JPEG image comprises a plurality of compressed
scans and wherein each compressed scan in the plurality
of compressed scans comprises a plurality of com-
pressed rows of image data;

decompressing not more than half of the compressed rows

of' each compressed scan in the plurality of compressed
scans into a memory buffer;

copying a remaining plurality of compressed rows of each

compressed scan in the plurality of compressed scans
into a plurality of small memory buffers;

decoding, in place, the decompressed rows in the memory

buffer;

storing the decoded decompressed rows in the memory

buffer;

decompressing, from the small memory buffers, not more

than half of the remaining compressed rows of each
compressed scan in the plurality of compressed scans
into the memory buffer;

decoding the rows decompressed from the plurality of

small memory buffers in the memory buffer;
storing the decoded rows decompressed from the plurality
of small memory buffers in the memory buffer; and

repeating the steps of decompressing, decoding, and stor-
ing the remaining compressed rows in the plurality of
small memory buffers until a predefined number of rows
are remaining in the plurality of small memory buffers,
at which time the remaining rows are decompressed and
decoded.

2. The method of claim 1, wherein there is a one-to-one
correspondence between each compressed scan in the plural-
ity of compressed scans and each small memory buffer in the
plurality of small memory buffers.

3. The method of claim 1, wherein the JPEG image com-
prises a height and a width, and a size of the memory buffer is
calculated as the height times the width times a number of
color channels of the JPEG image.

4. The method of claim 1, wherein decoding, in place,
comprises performing, an inverse discrete cosine transform
and color conversion on the decompressed TOWS.

5. The method of claim 1, wherein decompressing is per-
formed using Huffman decompression.

6. The method of claim 1, wherein an amount of memory
required for decoding the progressive JPEG, in addition to the
memory buffer, is equal to half of a file size of the JPEG
image.

7. A system for decoding progressive JPEG images com-
prising:

at least one processor; and

10

15

20

25

30

35

40

45

50

55

60

65

10

at least one non-transitory computer readable storage
medium storing instructions thereon that, when
executed by the at least one processor, cause the system
to perform the steps of:

accessing a progressive JPEG image, wherein the progres-

sive JPEG image comprises a plurality of compressed
scans and wherein compressed scans in the plurality of
compressed scans comprises a plurality of compressed
rows of image data;

decompressing not more than half of the compressed rows

of the compressed scans in the plurality of compressed
scans into a memory buffer;

copying a remaining plurality of compressed rows of the

compressed scans in the plurality of compressed scans
into a plurality of small memory buffers;

decoding, in place, the decompressed rows in the memory

buffer, wherein decoding the decompressed rows in the
memory buffer frees up at least half of the space in the
memory buffer by replacing the decompressed rows
with decoded data;

storing the decoded decompressed rows in the memory

buffer;

decompressing, from the small memory buffers, not more

than half of the remaining compressed rows of each
compressed scan in the plurality of compressed scans
into the memory buffer;

decoding, in place, the rows decompressed from the plu-

rality of small memory buffers in the memory buffer,
wherein decoding the decompressed rows in the
memory buffer frees up at least half of the remaining
space in the memory buffer by replacing the decom-
pressed rows with decoded data; and

repeating the steps of decompressing, decoding, and stor-

ing the remaining compressed rows in the plurality of
small memory buffers until a predefined number of rows
are remaining in the plurality of small memory buffers,
at which time the remaining rows are decompressed and
decoded.

8. The system of claim 7, wherein there is a one-to-one
correspondence between the compressed scans in the plural-
ity of compressed scans and the small memory buffer in the
plurality of small memory buffers.

9. The system of claim 7, wherein the JPEG image com-
prises a height and a width, and a size of the memory buffer is
calculated as the height times the width times a number of
color channels of the JPEG image.

10. The system of claim 7, wherein decompressing is per-
formed using Huffman decompression, and wherein decod-
ing, in place, comprises performing, an inverse discrete
cosine transform and color conversion on the decompressed
TOWS.

11. The system of claim 7, wherein an amount of memory
required for decoding the progressive JPEG, in addition to the
memory buffer, is equal to half of a file size of the JPEG
image.

12. A non-transitory computer readable medium storing
computer instructions that, when executed by at least one
processor causes the at least one processor to perform a
method for a memory efficient approach for decoding pro-
gressive JPEG images comprising:

accessing a progressive JPEG image, wherein the progres-

sive JPEG image comprises a plurality of compressed
scans and wherein each compressed scan in the plurality
of compressed scans comprises a plurality of com-
pressed rows of image data;

US 9,154,800 B2

11

decompressing not more than half of the compressed rows
of' each compressed scan in the plurality of compressed
scans into a memory buffer;

copying a remaining plurality of compressed rows of each

compressed scan in the plurality of compressed scans
into a plurality of small memory buffers;

decoding, in place, the decompressed rows in the memory

buffer;

storing the decoded decompressed rows in the memory

buffer;

decompressing, from the small memory buffers, not more

than half of the remaining compressed rows of each
compressed scan in the plurality of compressed scans
into the memory buffer;

decoding the rows decompressed from the plurality of

small memory buffers in the memory buffer;
storing the decoded rows decompressed from the plurality
of small memory buffers in the memory buffer; and

repeating the steps of decompressing, decoding, and stor-
ing the remaining compressed rows in the plurality of
small memory buffers until a predefined number of rows
are remaining in the plurality of small memory buffers,
at which time the remaining rows are decompressed and
decoded.

13. The computer readable medium of claim 12, wherein
there is a one-to-one correspondence between each com-
pressed scan in the plurality of compressed scans and each
small memory buffer in the plurality of small memory buff-
ers.

10

15

20

25

12

14. The computer readable medium of claim 12, wherein
the JPEG image comprises a height and a width, wherein a
size of the memory buffer is calculated as the height times the
width times a number of color channels of the JPEG image.

15. The computer readable medium of claim 12, wherein
decompressing is performed using Huffman decompression.

16. The method of claim 1, wherein decoding the decom-
pressed rows in the memory buffer frees up at least half of the
space in the memory buffer.

17. The method of claim 1, wherein, repeating the step of
decompressing comprises decompressing not more than half
of the compressed rows of each compressed scan in the plu-
rality of compressed scans copied into the plurality of small
memory buffers into a portion of the memory buffer that was
freed up upon decoding the decompressed rows previously in
the memory buffer.

18. The method of claim 1, wherein decompressing not
more than half of the compressed rows of each compressed
scan in the plurality of compressed scans into a memory
buffer comprises decompressing an amount of compressed
rows of each compressed scan in the plurality of compressed
scans into the memory buffer, until the memory bufter is full.

19. The computer readable medium of claim 12, wherein a
size of the memory buffer is calculated as the height times the
width times a number of color channels of the JPEG image.

20. The computer readable medium of claim 12, wherein
decoding comprises performing, an inverse discrete cosine
transform and color conversion on the decompressed rows.

#* #* #* #* #*

